With increasing number of crowdsourced private automatic weather stations (called TPAWS) established to fill the gap of official network and obtain local weather information for various purposes, the data quality is a major concern in promoting their usage. Proper quality control and assessment are necessary to reach mutual agreement on the TPAWS observations. To derive near real-time assessment for operational system, we propose a simple, scalable and interpretable framework based on AI/Stats/ML models. The framework constructs separate models for individual data from official sources and then provides the final assessment by fusing the individual models. The performance of our proposed framework is evaluated by synthetic data and demonstrated by applying it to a re-al TPAWS network.
translated by 谷歌翻译
Rapid advancements in collection and dissemination of multi-platform molecular and genomics data has resulted in enormous opportunities to aggregate such data in order to understand, prevent, and treat human diseases. While significant improvements have been made in multi-omic data integration methods to discover biological markers and mechanisms underlying both prognosis and treatment, the precise cellular functions governing these complex mechanisms still need detailed and data-driven de-novo evaluations. We propose a framework called Functional Integrative Bayesian Analysis of High-dimensional Multiplatform Genomic Data (fiBAG), that allows simultaneous identification of upstream functional evidence of proteogenomic biomarkers and the incorporation of such knowledge in Bayesian variable selection models to improve signal detection. fiBAG employs a conflation of Gaussian process models to quantify (possibly non-linear) functional evidence via Bayes factors, which are then mapped to a novel calibrated spike-and-slab prior, thus guiding selection and providing functional relevance to the associations with patient outcomes. Using simulations, we illustrate how integrative methods with functional calibration have higher power to detect disease related markers than non-integrative approaches. We demonstrate the profitability of fiBAG via a pan-cancer analysis of 14 cancer types to identify and assess the cellular mechanisms of proteogenomic markers associated with cancer stemness and patient survival.
translated by 谷歌翻译
Applying deep learning concepts from image detection and graph theory has greatly advanced protein-ligand binding affinity prediction, a challenge with enormous ramifications for both drug discovery and protein engineering. We build upon these advances by designing a novel deep learning architecture consisting of a 3-dimensional convolutional neural network utilizing channel-wise attention and two graph convolutional networks utilizing attention-based aggregation of node features. HAC-Net (Hybrid Attention-Based Convolutional Neural Network) obtains state-of-the-art results on the PDBbind v.2016 core set, the most widely recognized benchmark in the field. We extensively assess the generalizability of our model using multiple train-test splits, each of which maximizes differences between either protein structures, protein sequences, or ligand extended-connectivity fingerprints. Furthermore, we perform 10-fold cross-validation with a similarity cutoff between SMILES strings of ligands in the training and test sets, and also evaluate the performance of HAC-Net on lower-quality data. We envision that this model can be extended to a broad range of supervised learning problems related to structure-based biomolecular property prediction. All of our software is available as open source at https://github.com/gregory-kyro/HAC-Net/.
translated by 谷歌翻译
There is significant interest in deploying machine learning algorithms for diagnostic radiology, as modern learning techniques have made it possible to detect abnormalities in medical images within minutes. While machine-assisted diagnoses cannot yet reliably replace human reviews of images by a radiologist, they could inform prioritization rules for determining the order by which to review patient cases so that patients with time-sensitive conditions could benefit from early intervention. We study this scenario by formulating it as a learning-augmented online scheduling problem. We are given information about each arriving patient's urgency level in advance, but these predictions are inevitably error-prone. In this formulation, we face the challenges of decision making under imperfect information, and of responding dynamically to prediction error as we observe better data in real-time. We propose a simple online policy and show that this policy is in fact the best possible in certain stylized settings. We also demonstrate that our policy achieves the two desiderata of online algorithms with predictions: consistency (performance improvement with prediction accuracy) and robustness (protection against the worst case). We complement our theoretical findings with empirical evaluations of the policy under settings that more accurately reflect clinical scenarios in the real world.
translated by 谷歌翻译
A growing ecosystem of large, open-source foundation models has reduced the labeled data and technical expertise necessary to apply machine learning to many new problems. Yet foundation models pose a clear dual-use risk, indiscriminately reducing the costs of building both harmful and beneficial machine learning systems. To mitigate this risk, we propose the task blocking paradigm, in which foundation models are trained with an additional mechanism to impede adaptation to harmful tasks while retaining good performance on desired tasks. We call the resulting models self-destructing models, inspired by mechanisms that prevent adversaries from using tools for harmful purposes. We present an algorithm for training self-destructing models leveraging techniques from meta-learning and adversarial learning, showing that it can largely prevent a BERT-based model from learning to perform gender identification without harming the model's ability to perform profession classification. We conclude with a discussion of future directions.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Existing metrics for evaluating the quality of automatically generated questions such as BLEU, ROUGE, BERTScore, and BLEURT compare the reference and predicted questions, providing a high score when there is a considerable lexical overlap or semantic similarity between the candidate and the reference questions. This approach has two major shortcomings. First, we need expensive human-provided reference questions. Second, it penalises valid questions that may not have high lexical or semantic similarity to the reference questions. In this paper, we propose a new metric, RQUGE, based on the answerability of the candidate question given the context. The metric consists of a question-answering and a span scorer module, in which we use pre-trained models from the existing literature, and therefore, our metric can be used without further training. We show that RQUGE has a higher correlation with human judgment without relying on the reference question. RQUGE is shown to be significantly more robust to several adversarial corruptions. Additionally, we illustrate that we can significantly improve the performance of QA models on out-of-domain datasets by fine-tuning on the synthetic data generated by a question generation model and re-ranked by RQUGE.
translated by 谷歌翻译
3D Flash LiDAR是传统扫描激光雷达系统的替代方法,有望在紧凑的外形尺寸中进行精确的深度成像,并且没有运动部件,例如自动驾驶汽车,机器人技术和增强现实(AR)等应用。通常在图像传感器格式中使用单光子,直接飞行时间(DTOF)接收器实施,设备的操作可能会受到需要在室外场景中处理和压缩的大量光子事件的阻碍以及对较大数组的可扩展性。我们在这里提出了一个64x32像素(256x128 spad)DTOF成像器,该成像器通过将像素与嵌入式直方图使用像素一起克服这些局限性,该直方直方图锁定并跟踪返回信号。这大大降低了输出数据帧的大小,可在10 kfps范围内或100 kfps的最大帧速率进行直接深度读数。该传感器可选择性地读数检测表面或传感运动的像素,从而减少功耗和片外处理要求。我们演示了传感器在中端激光雷达中的应用。
translated by 谷歌翻译
最近在生物医学中大型数据集的可用性激发了多种医疗保健应用的代表性学习方法的开发。尽管预测性能取得了进步,但这种方法的临床实用性在暴露于现实世界数据时受到限制。在这里,我们开发模型诊断措施,以检测部署过程中潜在的陷阱,而无需访问外部数据。具体而言,我们专注于通过数据转换建模电生理信号(EEG)的现实数据转移,并通过分析a)模型的潜在空间和b)预测性不确定性在这些变换下扩展了常规的基于任务的评估。我们使用公开可用的大规模临床EEG进行了多个EEG功能编码器和两个临床相关的下游任务进行实验。在这种实验环境中,我们的结果表明,在提出的数据转移下,潜在空间完整性和模型不确定性的度量可能有助于预测部署过程中的性能退化。
translated by 谷歌翻译
期望与成功采用AI来创新和改善业务之间仍然存在很大的差距。由于深度学习的出现,AI的采用率更为复杂,因为它经常结合大数据和物联网,从而影响数据隐私。现有的框架已经确定需要专注于以人为中心的设计,结合技术和业务/组织的观点。但是,信任仍然是一个关键问题,需要从一开始就设计。拟议的框架从以人为本的设计方法扩展,强调和维持基于该过程的信任。本文提出了负责人工智能(AI)实施的理论框架。拟议的框架强调了敏捷共同创造过程的协同业务技术方法。目的是简化AI的采用过程来通过在整个项目中参与所有利益相关者来创新和改善业务,以便AI技术的设计,开发和部署与人合作而不是孤立。该框架对基于分析文献综述,概念框架设计和从业者的中介专业知识的负责人AI实施提出了新的观点。该框架强调在以人为以人为中心的设计和敏捷发展中建立和维持信任。这种以人为中心的方式与设计原则的隐私相符和启用。该技术和最终用户的创建者正在共同努力,为业务需求和人类特征定制AI解决方案。关于采用AI来协助医院计划的说明性案例研究将证明该拟议框架适用于现实生活中的应用。
translated by 谷歌翻译